This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Terminal Fluoroolefins. The Synthesis of Novel Carboacyclic Nucleosides

Shawn C. Miller^a; James R. McCarthy^a; Jeffrey S. Sabol^a

^a Hoechst Marion Roussel Inc., Cincinnati, OH

To cite this Article Miller, Shawn C. , McCarthy, James R. and Sabol, Jeffrey S.(1998) 'Terminal Fluoroolefins. The Synthesis of Novel Carboacyclic Nucleosides', Nucleosides, Nucleotides and Nucleic Acids, 17: 6, 1099 - 1113

To link to this Article: DOI: 10.1080/07328319808004223 URL: http://dx.doi.org/10.1080/07328319808004223

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

TERMINAL FLUOROOLEFINS. THE SYNTHESIS OF NOVEL CARBOACYCLIC NUCLEOSIDES.

Shawn C. Miller^{1a}, James R. McCarthy^{1b} and Jeffrey S. Sabol^{*} Hoechst Marion Roussel Inc., 2110 East Galbraith Rd., Cincinnati, OH 45215.

ABSTRACT:

A facile preparation of ketone 7 from butanetriol acetonide 5 is reported, and its utility for the synthesis of novel carboacyclic nucleosides 3E, 3Z, 4E and 4Z by the selective manipulation of multiple functionalities is demonstrated.

The incorporation of the terminal fluoroolefin group into substrates has been useful in the design of a number of mechanism-based enzyme inhibitors.² A recent report describes the stereospecific synthesis of (E)-2'-deoxy-2'-(fluoromethylene)cytidine (1) and its potent antiproliferative and cytotoxic activity.³ Another report details the design and syntheses of (E)- and (Z)-5'-fluoro-4',5'-didehydro-5'-deoxyadenosines (2E and 2Z) as mechanism-based and competitive inhibitors of S-adenosyl-L-homocysteine (SAH) hydrolase.⁴ In each of these cases, olefin geometry is important for optimal activity. As a continuation of these efforts, we were interested in the synthesis of carboacyclic nucleoside analogs 3E, 3Z, 4E and 4Z which incorporate the terminal fluoroolefin moiety. Our approach for obtaining these target molecules was to synthesize the functionalized acyclic side chains and then couple with heterocyclic bases through alkylation or Mitsunobu⁵ reactions.

Butanetriol acetonide 5⁶ was chosen as the starting material with the terminal carbinol envisioned as the site for coupling with heterocyclic bases (Scheme I). To differentiate between the two primary alcohol functional groups, alcohol 5 was first protected as its p-methoxybenzyl (PMB) ether, and then treated with 80% aqueous acetic acid to afford diol 6 in 81% overall yield for the two steps. The selective protection of the primary alcohol group as the t-butyldimethylsilyl (TBDMS) ether was accomplished by 4-dimethylaminopyridine (DMAP) catalyzed silylation⁷ in 81% yield, allowing for Swern oxidation of the secondary alcohol to furnish ketone 7 in 97% yield. This sequence provides multigram quantities of ketone 7 which is suitably protected to allow for the selective manipulation of the three functional groups.

The next phase of the synthesis involved the introduction of the terminal fluoroolefin at the carbonyl position of 7, and the selective deprotection of the two differentially protected primary alcohols (Scheme II). Horner-Wittig reaction of ketone 7 with *in situ* generated diethyl 1-fluoro-1-(phenylsulfonyl)methane phosphonate⁸ carbanion afforded fluorovinyl sulfone 8 in 84% yield as a 2:1 E/Z mixture of geometric isomers. Treatment of sulfone mixture 8 with tributyltin hydride (2 equivs.) in cyclohexane at reflux⁹ afforded a 2:1 mixture of fluorovinyl stannanes 9. Subsequent treatment of 9 with excess tetrabutylammonium fluoride (TBAF) produced both protodestannylation and desilylation, resulting in a 2:1 mixture of fluoro olefins 10 in 96% yield for the two steps. The separation of the two geometric isomers of 10 was achieved with difficulty at this stage of the synthesis. However, benzoylation of alcohol mixture 10 and removal of the *p*-methoxybenzyl group from mixture 11 with DDQ conveniently afforded a chromatographically separable mixture of 12E and 12Z in 75% yield for the two steps in a 2:1 ratio, respectively.

The coupling reactions of readily available acyclic side chains 12E and 12Z with heterocyclic bases were next examined (Scheme III). For the introduction of purine bases, the Mitsunobu reaction of 6-chloropurine with alcohols 12E and 12Z produced the N⁹-substituted purines 13E and 13Z in 59% and 49% yields, respectively. Debenzoylation and conversion of 13E and 13Z to adenosines 3E and 3Z was conveniently accomplished with methanolic ammonia in 54% and 49% yields, respectively. NOESY and RELAY ¹H

Reagents: (a) p-CH₃OC₆H₄CH₂Cl, NaH, DMF, rt(16h); (b) 80% aq. HOAc, rt(6h); (c) TBDMS-Cl, Et₃N, DMAP, DMF, rt(16h); (d) DMSO, (COCl)₂, Et₃N, CH₂Cl₂, -60^OC-rt.

Scheme I

TBDMSO 7
$$\frac{a (84\%)}{12E/12Z=2:1}$$
 $\frac{PhO_2S}{F}$ $OPMB$ $b (96\%)$ $OPMB$ $b (96\%)$ $OPMB$ $OPMB$

Reagents: (a) PhSO₂CH₂F, (EtO)₂P(O)Cl, LiN(Si(CH₃)₃)₂, THF, -60^OC-rt; (b) Bu₃SnH, AIBN, cyclohexane, 80 ^OC; (c) 2.5eq. TBAF, THF, 0^OC(1h); (d) benzoyl chloride, pyridine; (e) DDQ, CH₂Cl₂-H₂O, 16:1, rt.

Scheme II

Reagents: (a) 6-chloropurine, DEAD, Ph₃P, THF, rt; (b) NH₃(g), MeOH, 50° C(16h); (c) NBS, Ph₃P, CH₂Cl₂, rt; (d) K₂CO₃, DMF, N⁶-acetylcytosine, 80° C; (e) 1% aq. NaOH, MeOH, rt.

Scheme III

NMR experiments confirmed olefin geometries and N⁹-substitution of the final products. ¹¹ For the synthesis of cytidines **4E** and **4Z**, a two-step sequence of Mitsunobu coupling of **12E** and **12Z** with 4-ethoxypyrimidin-2-one ¹⁰ followed by treatment with methanolic ammonia was planned. Although Mitsunobu coupling was successful, repeated attempts at conversion to cytidine final products with methanolic ammonia at elevated temperatures (sealed tube) failed in our hands. The successful synthesis of cytidines **4E** and **4Z** commenced with the conversion of alcohols **12E** and **12Z** to electrophilic bromides **14E** and **14Z** in 73% and 91% yields, respectively. Alkylation of **14E** and **14Z** with N⁶-acetylcytosine ¹² afforded **15E** and **15Z** in fair yields, and hydrolysis or aminolysis completed the synthesis of cytidines **4E** and **4Z**.

Nucleoside analogs 3E, 3Z, 4E and 4Z were evaluated as cytotoxic agents in a HeLa cell assay (see experimental for procedure). The best activities were obtained with adenosine 3E and cytidine 4E ($IC_{50} \cong 200$ nM), whereas 3Z and 4Z were approximately five times less potent ($IC_{50} \cong 1000$ nM). The difference in the biological activities of 3E and 4E relative to 3Z and 4Z may be attributed to olefin geometry, and is consistent with data reported for 1 ($IC_{50} = 58$ nM) and its Z-isomer ($IC_{50} = 3870$ nM).

In conclusion, a convenient route to a novel series of carboacyclic fluoroolefin nucleosides is reported and preliminary cytotoxic data is presented. Future work will define parameters for optimum activity within these series.

EXPERIMENTAL

All melting points are uncorrected. ¹H NMR spectra were recorded on a Varian VXR-300 (300 MHz, multinuclear probe) in CDCl₃. ¹³C NMR were recorded on a VXR-300 (75 MHz) in CDCl₃. ¹⁹F NMR spectra were recorded at 282 MHz in CDCl₃ on the Varian VXR-300 with CFCl₃ as an external standard. Mass spectra were obtained with a Finnigan MAT Model 4600 (electron impact and chemical ionization) mass spectrometer. Combustion analyses for C, H, and N were performed by Marion Merrell Dow Analytical Laboratories, Cincinnati, OH. The silica gel used in flash chromatography was 40-63 mm size.

4-(4-Methoxybenzyloxy)butan-1,2-diol (6). A solution of butane-1,2,4-triol-1,2-acetonide 5⁵ (9.54g, 65.3 mmol) in anhydrous DMF (30 mL) was added dropwise to a rapidly stirred suspension of hexane washed NaH (4.0g of 60% w/w suspension, 100 mmol, 1.5 eq) in anhydrous DMF (50 mL) at ambient temperature. A cloudy yellow solution resulted and after 1h, a solution of 4-methoxybenzyl chloride (11.25g, 71.8 mmol, 1.1 eq) in anhydrous DMF (30 mL) was added dropwise. After the addition was complete, the reaction was allowed to stir for 16 h at ambient temperature. The reaction was slowly quenched with saturated aqueous NH₄Cl (10 mL) then partitioned between ethyl ether (200 mL) and water (400 mL). The aqueous layer was extracted with ether (3 x 200 mL) and the combined extracts were washed with brine (2 x 100 mL), dried

(MgSO₄), filtered and concentrated under reduced pressure to give 4-(4-methoxybenzyloxy)butan-1,2-diol-1,2-acetonide as a cloudy, dark yellow oil. The product was purified by flash chromatography (silica gel, 9:1 hexane/ethyl acetate, R_f = 0.16) to a clear, pale yellow oil (15 g, 86% yield). ¹H NMR (300 MHz, CDCl₃) δ 1.35 (s,3H), 1.40 (s,3H), 1.86 (m,2H), 3.53 (q, J=2.0 Hz, 2H), 3.56 (q, J=4.0 Hz, 2H), 3.80 (s, 3H), 4.04 (d, J=8.3 Hz, 1H), 4.06 (d, J=8.3 Hz, 1H), 4.20 (q, J=6.7 Hz, 1H), 4.43 (s, 2H), 6.87 (dt, J=6.8, 1.1 Hz, 2H), 7.25 (dt, J=6.8, 1.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 25.77, 26.92, 33.84, 55.25, 66.74, 69.63, 72.72, 73.89, 108.49, 113.77, 129.19, 130.40, 159.16; HRMS calc $C_{15}H_{22}O_4$) 266.1518, found, 266.1511.

4-(4-methoxybenzyloxy)butan-1,2-diol-1,2-acetonide (15 g, 56.3 mmol) was stirred in 80% aqueous acetic acid (100 mL) for 18 h at ambient temperature. The solvent was removed under reduced pressure, and the residue was dissolved in dichloromethane (300 mL) and then washed quickly with saturated aqueous NaHCO₃ (2 x 50 mL), dried (MgSO₄), filtered and concentrated under reduced pressure. Residual acetic acid was removed on a rotary evaporator under high vacuum with heating to afford **6** (11.94 g, 52.92 mmol, 94%) as a yellow oil. 1 H NMR (300 MHz, CDCl₃) δ 1.73 (m, 2H), 2.87 (bs, 1H), 3.46 (dd, J = 11.3, 6.5 Hz, 2H), 3.58 (q, J = 3.6 Hz, 1H), 3.63 (m, 1H), 3.79 (s, 3H), 3.87 (m, 1H), 4.44 (s, 2H), 6.87 (dt, J = 8.2, 1.8 Hz, 2H), 7.24 (dt, J = 8.2, 1.8 Hz, 2H); 13 C NMR (75 MHz, CDCl₃) δ 32.75, 55.21, 66.49, 67.75, 71.16, 72.89, 113.82, 129.38, 159.25; HRMS calc (C₁₂H₁₈O₄) 226.1205, found, 226.1202.

1-(t-Butyldimethylsilyloxy)-4-(4-methoxybenzyloxy)butan-2-one (7). Diol 6 (42.43g, 187.5 mmol) was dissolved in anhydrous DMF (700 mL) and cooled in an ice bath. t-Butyldimethylsilyl chloride (31.11g, 206 mmol, 1.1 eq), triethylamine (31.4 mL, 225 mmol, 1.2 eq), and a catalytic amount of 4-(dimethylamino)pyridine (5.8 g, 4.7 mmol, 2.5 mol %) were then added. Stirring was continued for 10 min. and the bath was removed and stirring was continued at room temperature for 18 h. Solids were filtered off and the filtrate was partitioned between ethyl ether (500 mL) and water (100 mL). The aqueous layer was extracted with ether (2 x 500 mL), and the combined ether extracts were washed with brine (2 x 500 mL), and dried (MgSO₄), filtered and concentrated

under reduced pressure to yield a cloudy colorless oil. The mono-protected diol was purified by flash chromatography (silica gel, 4:1 hexane/ethyl acetate, $R_f = 0.25$) to a clear colorless oil (51.4 g, 81% yield). ¹H NMR (300 MHz, CDCl₃) δ 0.05 (s, 6H), 0.90 (s, 9H), 1.69 (m, 2H), 2.77 (d, J=4.0 Hz, 1H), 3.50 (dd, J=11, 7 Hz, 2H), 3.59 (qd, J=7, 4 Hz, 2H), 3.75 (s, 3H), 4.40 (s, 2H), 6.82 (dt, J=8, 2 Hz, 2H), 7.20 (dt, J=8, 2 Hz, 2H).

To a solution of oxalyl chloride (1 mL, 11.45 mmol, 1.3 eq), in CH₂Cl₂ (35 mL) was added DMSO (1.69 mL, 23.79 mmol, 2.7 eq) dropwise at -78°C never allowing the temperature of the reaction mixture to exceed -55°C. After 10 min., a solution of the mono-protected diol (3.00 g, 8.81 mmol) in CH₂Cl₂ (10 mL) was added dropwise never allowing the internal temperature to exceed -65°C. After 20 min., triethylamine (4.9 mL. 35.24 mmol, 4 eq) was added and the cooling bath was then removed and the mixture was warmed to ambient temperature and stirred for 1.5h. The reaction was diluted to 200 mL with CH₂Cl₂ and washed with water (2 x 100 mL) and brine (100 mL), dried (MgSO₄), filtered and concentrated under reduced pressure to a yellow oil which was purified by flash chromatography (silica gel, 9:1 hexane/ethyl acetate, $R_f = 0.18$) to afford 7 (2.90 g, 8.55 mmol, 97%) as an oil. ¹H NMR (300 MHz, CDCl₃) δ 0.074 (s, 6H), 0.91 (s, 9H), 2.76 (t, J=6.4 Hz, 2H), 3.73 (t, J=6.4 Hz, 1H), 3.80 (s, 3H), 3.89 (t, J=5.2 Hz, 1H), 4.20 (s, 2H), 4.44 (s, 2H), 6.87 (dt, J= 8.7, 1.7 Hz, 2H), 7.24 (dt, J=8.7, 1.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ -5.55, 25.74, 38.85, 55.24, 64.73, 69.69, 72.88, 113.76, 129.33, 130.13, 159.20, 209.81: Anal. Calcd for C₁₈H₃₀SiO₄; %C, 63.87, %H, 8.93. Found; %C, 63.69, %H, 8.82.

1-(t-Butyldimethylsilyloxy)-3-(benzenesulfonyl)-3-fluoro-2-[2-(4-methoxy-

benzyloxy)ethyl]prop-2-ene (8). Lithium bis(trimethylsilyl)amide (70 mL, 1 M in THF, 70 mmol, 2.0 eq) was added to a solution of fluoromethyl phenyl sulfone (6.10 g, 34.96 mmol, 1.1 eq) and diethyl chlorophosphate (6.3 g, 34.96 mmol, 1.1 eq) in anhydrous THF (100 mL) at -78°C. After 1 h, a solution of ketone 7 (10.76 g, 31.78 mmol) in anhydrous THF (50 mL) was added at -78°C. After 5 min, the bath was removed and the reaction was warmed to room temperature and stirred for 18 h. The reaction was quenched with saturated aqueous NH₄Cl (30 mL) and then partitioned between ethyl ether (200 mL) and

water (200 mL). The aqueous layer was extracted with ether (2 x 200 mL) and the combined ether layers were washed with water (200 mL) and brine (200 mL), then dried (MgSO₄), filtered and concentrated under reduced pressure to a dark brown oil. The crude product was purified by flash chromatography (silica gel, 9:1 hexane/ethyl acetate, $R_f = 0.20$) to afford 8 (13.17 g, 29.40 mmol, 84%) as an oil. ¹H NMR (300 MHz, CDCl₃) mixture of isomers, δ 0.01 (s, 6H), 0.11 (s, 6H), 0.87 (s, 9H), 0.92 (s, 9H), 2.56 (td, J=6.4, 3.6 Hz, 2H), 2.67 (td, J=6.4, 3.6 Hz, 2H), 3.00 (td, J=6.4, 1.2 Hz, 2H), 3.12 (td, J=6.4, 1.2 Hz, 2H), 3.59 (t, J=6.4 Hz, 2H), 3.69 (t, J=6.4 Hz, 2H), 4.20 (d, J=5.0 Hz, 2H), 4.31 (d, J=3.5 Hz, 2H), 4.40 (s, 2H), 4.49 (s, 2H), 4.70 (d, J=2.3 Hz, 2H), 7.18 (dt, J=8.5, 2.0 Hz, 2H); 13 C NMR (75 MHz, CDCl₃) mixture of isomers, δ 18.28, 25.70, 27.50 (d, J=12 Hz), 55.22, 57.68 (d, J=5 Hz), 58.75 (d, J=12 Hz), 67.00 (d, J=2 Hz), 68.21 (d, J=4 Hz), 72.38, 72.45, 113.75, 128.21 (d, J=21 Hz), 128.28 (d, J=21 Hz), 129.22 (d, J=10 Hz), 129.25 (d, J=15 Hz), 134.12, 134.22, 138.53, 138.65, 148.81 (d, J=284 Hz), 149.28 (d, J=284 Hz), 159.14; ¹⁹F NMR (282 MHz, CDCl₃) mixture of isomers, δ -119.20, -119.60 (1:2 ratio); HRMS calc (C₂₅H₃₆O₅SiSF) 495.2037, found, 495.2013.

1-(*t*-Butyldimethylsilyloxy)-3-fluoro-2-[2-(4-methoxybenzyloxy)ethyl]-3-tri-*n*-butylstannylprop-2-ene (9). Sulfone mixture 8 (13.0 g, 26.28 mmol), tributyltin hydride (15.29 g, 52.56 mmol, 2 eq), and a catalytic amount of AIBN (100 mg) in cyclohexane (300 mL) were refluxed for 6 h, then cooled to ambient temperature and concentrated under reduced pressure to a viscous oil. The crude product was purified by flash chromatography (silica gel, 3% ethyl acetate/hexane, $R_f = 0.29$ and 0.25) to afford 9 (16.22 g, 25.23 mmol, 2:1 E/Z mixture of isomers, 96%) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 0.036 (s, minor, 6H), 0.043 (s, major, 6H), 0.878 (m, minor, 9H), 0.881 (m, major, 9H), 1.01 (m, overlap major and minor, 6H and 6H), 1.30 (m, overlap 6H and 6H), 2.28 (m, minor, 2H), 2.56 (m, major, 2H), 3.47 (m, minor, 2H), 3.51 (m, major, 2H), 3.80 (s, overlap of major and minor, 2H and 2H), 3.93 (d, J= 3.2 Hz, major, 2H), 4.32 (d, J= 3.5 Hz, minor, 2H), 4.42 (s, minor, 2H), 4.44 (s, major, 2H), 6.86 (d, J= 8.6 Hz, overlap of major and minor, 2H and 2H); ¹⁹F NMR (282 MHz, CDCl₃) δ -101.55 (minor), -101.89 (major).

E,Z-3-Fluoro-2-[2-(4-methoxybenzyloxy)ethyl]prop-2-en-1-ol (10). To a solution of fluorovinyl stannanes **9** (1.94 g, 3.01 mmol) in THF (5 mL) was added a solution of 1M TBAF/THF (3 mL, 3 mmol) at 0°C. After 15 min, the bath was removed and the reaction proceeded until the starting material was consumed as indicated by TLC (about 15 min.). The reaction mixture was concentrated under reduced pressure and the residue was purified by flash chromatography (silica gel, 3:2 hexane/ethyl acetate, $R_f = 0.40$ and 0.32) to afford **10** as an oil in quantitative yield. *Z*-isomer (minor): ¹H NMR (300 MHz, CDCl₃) δ 1.85 (quin d, J=3.6 Hz, 1.6 Hz, 2H), 2.29 (tdd, J=6.0, 3.5, 1.3 Hz, 2H), 3.56 (td, J= 6.0, 1.0 Hz, 2H), 3.75 (d, J= 6.5 Hz, 2H), 3.87 (s, 3H), 4.23 (dd, J= 3.1, 1.0 Hz, 2H), 4.47 (s, 2H), 6.44 (dt, J= 84.5, 1.4 Hz, 1H), 6.88 (dt, J= 8.5, 1.8 Hz, 2H), 7.24 (dt, J= 8.5, 1.8 Hz, 2H); ¹⁹F NMR (282 MHz, CDCl₃) δ -131.388 (d, J= 84.5 Hz); *E*-isomer (major): ¹H NMR (300 MHz, CDCl₃) δ 2.50 (td, J= 5.6, 2.6 Hz, 2H), 3.05 (bs, 1H), 3.59 (t, J= 5.7 Hz, 2H), 3.80 (s, 3H), 3.93 (dd, J= 5.6, 1.0 Hz, 2H), 4.48 (s, 2H), 6.55 (d, J= 84.3 Hz, 1H), 6.88 (dt, J= 8.8, 2.0 Hz, 2H), 7.25 (dt, J= 8.8, 2.0 Hz, 2H); ¹⁹F NMR (282 MHz, CDCl₃) δ -131.530 (d, J= 84.3 Hz).

Benzoic Acid E,Z-3-Fluoro-2-[2-(4-methoxybenzyloxy)ethyl]allyl Ester (11). Benzoyl chloride (1.83 mL, 15.7 mmol, 1.1 eq) was added dropwise at room temperature to a solution of alcohol 10 (3.44 g, 14.3 mmol) in pyridine (15 mL) and the resulting white slurry was allowed to stir at room temperature for 18 h. The reaction mixture was diluted with ethyl acetate (75 mL) and filtered. The filter cake was washed with ethyl acetate (25 mL) and combined with the filtrate which was then washed with saturated aqueous sodium bicarbonate 2 x 50 mL). The organic layer was dried (MgSO₄), filtered and concentrated under reduced pressure to an oil which was purified by flash chromatography (silica gel, 9:1 hexane/ethyl acetate) to afford 11 (4.69 g, 13.59 mmol, 95%) as a 2:1 mixture of isomers. ¹H NMR (300 MHz, CDCl₃) δ 2.35 (td, J= 6.5, 1.1 Hz, 2H), 3.56 (t, J=6.5 Hz, 2H), 3.79 (s, 3H), 4.43 (s, 2H), 4.96 (dd, J= 2.8, 0.8 Hz, 2H), 6.88 (dt, J= 83.6, 1 Hz, 1H), 6.85 (dt, J= 9.0, 2.0 Hz, 2H), 7.28 (dt, J= 9.0, 2.0 Hz, 2H), 7.43 (tt, J= 7.0, 2.0 Hz, 2H), 7.56 (tt, J= 7.0, 2.0 Hz, 1H), 8.02 (dt, J= 7.0, 2.0 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 28.25 (d, J= 5.4 Hz), 55.24, 58.88 (d, J= 8.9 Hz), 67.75 (d, J= 3.0 Hz), 113.79, 115.21 (d, J= 3.5 Hz), 128.36, 129.22, 129.60, 130.07 (d, J= 13.0 Hz), 133.01, 145.97,

149.45, 159.20, 166.32; ¹⁹F NMR (282 MHz, CDCl₃) δ -128.39 (dt, J= 83.6, 1.0 Hz); HRMS; calc (C₂₀H₂₁O₄F) 344.1424, found, 344.1425.

Benzoic Acid E,Z-3-Fluoro-2-(2-hydroxyethyl)allyl Ester (12E and 12Z). To a solution of ether 11 (4.69 g, 13.6 mmol) in dichloromethane (16 mL) and water (1 mL) was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDO) (3.40 g, 14.9 mmol, 1.1 eq). A deep green solution formed immediately upon addition of DDQ then gave way to a brown colored suspension in 20 min. The starting material was consumed in 1 h as determined by TLC (silica gel, 9:1 hexane/ethyl acetate). The reaction was then filtered and the filtrate concentrated under reduced pressure to a red oil. The crude product was purified by flash chromatography (silica gel, 2:1 hexane/ethyl acetate, R_f= 0.29(12E), R_f= 0.20(12Z)) to yield 12E (1.60 g, 7.14 mmol, 55%), and 12Z (0.88 g, 3.92 mmol, 29%) as oils. 12Z: ¹H NMR (300 MHz, CDCl₃) δ 1.60 (bs, 1H), 2.32 (td, J= 6.0, 1.0 Hz, 2H), 3.66 (dd, J= 12.0, 6.0 Hz, 2H), 5.00 (dd, J= 3.0, 1.0 Hz, 2H), 6.63 (dt, J= 83.0, 1.0 Hz, 1H), 7.45 (tt, J= 7.0, 2.0 Hz, 2H), 7.58 (td, J= 7.0, 2.0 Hz, 1H), 8.03 (dt, J= 7.0, 2.0 Hz, 2H); ¹⁹F NMR (282 MHz, CDCl₃) δ -126.34 (d, J= 83.0 Hz). **12E**: ¹H NMR (300 MHz, CDCl₃) δ 1.59 (bs, 1H), 2.55 (td, J=7.0, 1.0 Hz, 2H), 3.82 (t, J=7.0 Hz, 2H), 4.12 (dd, J= 7.0, 1.0 Hz, 2H), 6.87 (dt, J= 83.0, 1.0 Hz, 1H), 7.45 (tt, J= 7.0, 2.0 Hz, 2H), 7.58 (td, J= 7.0, 2.0 Hz, 1H), 8.03 (dt, J= 7.0, 2.0 Hz, 2H); 19 F NMR (282 MHz, CDCl₃) δ -127.99 (d, J= 83.0 Hz).

Benzoic Acid E-2-[2-(6-Chloropurin-9-yl)ethyl]-3-fluoroallyl Ester (13E). Triphenylphosphine (883 mg, 3.37 mmol), 6-chloropurine (520 mg, 3.37 mmol), and alcohol 12E (775 mg, 3.37 mmol) were combined in anhydrous THF (10 mL) at room temperature. Diethylazodicarboxylate (DEAD) (587 mg, 3.37 mmol) was added slowly, dropwise and the reaction mixture became homogenous. After 48 h, starting material was consumed as determined by TLC (silica gel, 1:1 ethyl acetate/hexane). The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica gel, 1:1 ethyl acetate/hexane, $R_f = 0.33$). The coupled product 13E was collected as an oil containing DEAD-H₂ which was taken on to the next step without further purification. H NMR (300 MHz, CDCl₃) δ 2.91 (t, J= 1.9 Hz, 2H), 4.53 (t, J= 7.0 Hz, 2H), 4.79 (d, J= 3.6 Hz, 2H), 6.79 (d, J= 82.1 Hz, 1H), 7.45 (dd, J= 7.3, 1.6 Hz, 2H),

7.60 (m, 1H), 8.05 (t, J= 1.1 Hz, 1H), 8.69 (s, 1H); 19 F NMR (282 MHz, CDCl₃) δ - 125.64 (d, J= 82.1 Hz).

E-2-[2-(6-Aminopurin-9-yl)ethyl]-3-fluoroprop-2-en-1-ol (**3E**). Crude **13E** (576 mg, 1.60 mmol) containing some DEAD-H₂ was dissolved in saturated methanolic ammonia (15 mL) and heated to 50° C in a sealed tube for 16 h. The reaction mixture was then concentrated under reduced pressure and the product purified by flash chromatography (silica gel, 9:1 dichloromethane/methanol, R_f = 0.45) to give **3E** (205 mg, 0.86 mmol, 54%) as an off white powder. m. p.= 168-169°C; ¹H NMR (300 MHz, CDCl₃) δ 2.63 (dd., J= 6.7, 1.4 Hz, 2H), 3.37 (bs, 1H), 3.87 (dd., J= 4.1, 1.0 Hz, 2H), 4.28 (t, J= 7.0 Hz, 2H), 4.95 (bs, 1H), 6.74 (d, J= 85.9 Hz, 1H), 7.35 (s, 1H), 8.15 (d, J= 12.2 Hz, 1H); ¹⁹F NMR (282 MHz, DMSO-d₆) δ -135.37 (d, J= 85.9 Hz); ¹³C NMR (75 MHz, DMSO-d₆) δ 25.08 (d, J=4.3 Hz), 40.86 (d, J= 2.5 Hz), 58.66 (d, J= 11.0 Hz), 119,43 (d, J= 2.8 Hz), 121.56, 141.05, 145.52, 148.92, 149.34, 151.53, 155.29; HRMS calc (C₁₀H₁₃N₅OF), 238.1104; found, 238.1102.

Benzoic Acid Z-2-[2-(6-Chloropurin-9-yl)ethyl]-3-fluoroallyl Ester (13Z). Triphenylphosphine (150 mg, 0.572 mmol, 1.0 eq), 6-chloropurine (88.5 mg, 0.572 mmol, 1.0 eq) and alcohol 12Z (128 mg, 0.572 mmol) were combined in anhydrous THF (2 mL) at room temperature. Diethylazodicarboxylate (99.6 mg, 0.572 mmol, 1.0 eq) was added and the reaction became homogenous. After 19 h, the reaction mixture was concentrated under reduced pressure and the residue was purified by radial chromatography (2 mm silica gel plate, 1:1 hexane/ethyl acetate, $R_f = 0.24$) to afford 13Z (122 mg, 0.34 mmol, 59%) as a white solid. m.p. = 87-88°C; 1 H NMR (300 MHz, CDCl₃) δ 2.68 (td, J=7.0, 3.0 Hz, 2H), 4.48 (t, J= 7.0 Hz, 2H), 5.11 (s, 2H), 6.37 (d, J=82.2 Hz, 1H), 7.47 (t, J=8.0 Hz, 2H), 7.60 (td, J=8.0, 1.0 Hz, 1H), 8.06 (dd, J=8.0, 1.0 Hz, 2H), 8.08 (s, 1H), 8.70 (s, 1H); 13 C NMR (75 MHz, CDCl₃) δ 28.62 (d, J= 5.6 Hz), 42.86 (d, J= 3.9 Hz), 58.15 (d, J= 8.1 Hz), 76.82 (d, J= 23.9 Hz), 114.08 (d, J= 4.1 Hz), 128.58, 129.66, 133.41, 144.91, 147.18, 149.83, 151.59 (d, J= 34.5 Hz), 152.01, 166.46; 19 F NMR (282 MHz, CDCl₃) δ -123.55 (dt, J= 82.8, 2.0 Hz); HRMS calc (C₁₇H₁₅N₄O₂ClF), 361.0868; found, 361.0890.

Z-2-[2-(6-Aminopurin-9-yl)ethyl]-3-fluoroprop-2-en-1-ol (**3Z**). Compound **13Z** (122 mg, 0.34 mmol) was dissolved in saturated methanolic ammonia (10 mL) and heated to 50° C in a sealed tube for 18 h. Volatile materials were removed under reduced pressure and the residue was purified by radial chromatography (silica gel, 9:1 dichloromethane/methanol, $R_f = 0.23$) to give **3Z** (32 mg, 0.16 mmol, 49%) as a white solid. m.p.=173-174°C; ¹H NMR (300 MHz, DMSO-d₆) δ 4.11 (qd, J= 2.8, 1.0 Hz, 2H), 4.27 (t, J= 7.0 Hz, 2H), 4.95 (t, J= 5.7 Hz, 2H), 6.35 (d, J= 85.7 Hz, 1H), 7.17 (s, 2H), 8.09 (s, 1H), 8.14 (s, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ 27.43 (d, J= 7.0 Hz), 40.34 (d, J= 3.1 Hz), 54.04 (d, J=7.6 Hz), 118.61, 119.50 (d, J= 4.13 Hz), 140.80, 143.21, 146.60, 149.43, 152.30, 155.92; ¹⁹F NMR (282 MHz, DMSO-d₆) d -131.04 (dt, J= 85.7, 2.8 Hz); HRMS; calc (C₁₀H₁₃N₅OF) 238.1104, found, 238.1102.

Benzoic Acid 2-(2-Bromoethyl)-3E-fluoroallyl Ester N-(14E). Bromosuccinimide (391 mg, 2.20 mmol, 1.1 eq) was added portionwise to a solution of alcohol 12E (448 mg, 2.00 mmol) and triphenylphosphine (576 mg, 2.20 mmol, 1.1 eq) in dichloromethane (20 mL) at room temperature. After 18 h, the reaction mixture was diluted to 50 mL with dichloromethane and then washed with water (50 mL) and brine (50 mL) then dried MgSO₄) and concentrated under reduced pressure. The residue was triturated with 9:1 hexane/ethyl acetate and filtered through a plug of silica gel, eluting with the same solvent mixture. The product containing fractions were combined and evaporated to give 14E (417 mg, 1.46 mmol, 73%), as a clear colorless oil (silica gel,19:1 hexane/ethyl acetate, $R_f = 0.27$). ¹H NMR (300 MHz, CDCl₃) δ 2.85 (t. J= 7.0 Hz, 2H). 3.53 (t, J= 7.0 Hz, 2H), 4.76 (dd, J= 3.6, 1.0 Hz, 2H), 6.88 (dt, J= 82.5, 1.0 Hz, 1H), 7.46 (tt, J= 7.0, 2.0 Hz, 2H), 7.56 (tt, J= 7.0, 2.0 Hz, 1H), 8.40 (dt, J= 7.0, 2.0 Hz, 2H); ¹⁹F NMR (282 MHz, CDCl₃) δ -125.89 (d, J=82.5 Hz); MS (CI/CH₄) $[M+H]^{+}$ 287.

Benzoic Acid 2-(2-Bromoethyl)-3Z-fluoroallyl Ester (14Z). The procedure used to prepare 14E was applied to 13Z (455 mg, 2.03 mmol) to give 14Z (528 mg, 1.85 mmol, 91%) as a clear colorless oil ($R_f = 0.38$, silica gel, 19:1 hexane/ethyl acetate). ¹H NMR (300 MHz, CDCl₃) δ 2.62 (td, J= 6.8, 1.0 Hz, 2H), 3.52 (t, J= 6.8 Hz, 2H), 4.99 (dd, J= 28, 1.0 Hz, 2H), 6.64 (dt, J= 85.2, 1.0 Hz, 1H), 7.46 (tt, J= 7.0, 2.0 Hz, 2H), 7.59

(tt, J= 7.0, 2.0 Hz, 1H), 8.04 (dt, J= 7.0, 2.0 Hz, 2H); 19 F NMR (282 MHz, CDCl₃) δ - 125.90 (d, J= 82.5 Hz); MS (CI/CH₄) [M+H]⁺ 287.

Benzoic Acid 2-[2-(4-Acetylamino-2-2H-pyrimidin-1-yl)ethyl]-3E-fluoroallyl Ester (15E). N⁶-acetylcytosine (106 mg, 0.69 mmol, 1 eq), anhydrous potassium carbonate (105 mg, 0.77 mmol, 1.1 eq), and bromide 14E (198 mg, 0.69 mmol) were combined in anhydrous DMF (10 mL) and heated to 80°C in an oil bath for 18 h. The reaction mixture was cooled to room temperature and partitioned between dichloromethane (50 mL) and saturated aqueous sodium bicarbonate (50 mL). The organic layer was separated, dried (MgSO₄) and concentrated under reduced pressure. The residue was triturated with ethyl acetate (10 mL) and allowed to stand for 20 min, The resulting precipitate was collected by filtration to give a portion of the desired product. The filtrate was concentrated under reduced pressure and the remainder of the product was recovered after flash chromatography (silica gel, dichloromethane/methanol, $R_f = 0.20$) to yield 15E (200 mg, 0.56 mmol, 81%) as a white powder. m.p.= $191-193^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 2.22 (s, 3H), 2.72 (td, J= 6.6, 1.8 Hz, 2H), 4.08 (t, J = 6.6 Hz, 2H), 4.78 (d, J = 4.0 Hz, 2H), 6.83 (d, J = 82.2 Hz, 1H), 7.31 (d, J= 8.0 Hz, 1H), 7.46 (tt, J= 7.0, 2.0 Hz, 2H), 7.56 (tt, J= 7.0, 2.0 Hz, 2H), 8.82 (t, J= 7.3 Hz, 1H); ¹⁹F NMR (282 MHz, CDCl₃) δ -126.30 (d, J= 82.2 Hz); HRMS calc (C₁₈H₁₈FN₃O₄) 360.1369, found 360.1369.

Benzoic Acid 2-[2-(4-Acetylamino-2-oxo-2*H*-pyrimidin-1-yl)ethyl]-3*Z*-fluoroallyl Ester (15*Z*). The procedure used to prepare 15*E* was applied to 14*Z* (528 mg, 1.84 mmol) to give 15*Z* (179 mg, 0.55 mmol, 30%) as a white powder. m.p.= 203-204 $^{\circ}$ C; 1 H NMR (300 MHz, CDCl₃) δ 2.26 (s, 3H), 2.51 (td, J= 6.1, 0.5 Hz, 2H), 4.03 (t, J= 66.1 Hz, 2H), 5.05 (d, J= 3.0 Hz, 2H), 6.49 (d, J= 82.6 Hz, 1H), 7.37 (d, J= 7.2 Hz, 1H), 7.46 (tt, J= 7.0, 2.0 Hz, 2H), 7.46 (tt, J= 7.0, 2.0 Hz, 1H), 8.06 (dt, J= 7.0, 2.0 Hz, 2H), 9.49 (bs, 1H); 19 F NMR (282 MHz, CDCl₃) δ -124.10 (d, J= 82.6 Hz); HRMS calc (C₁₈H₁₈FN₃O₄) 360.1369, found 360.1367.

4-Amino-1-(4-fluoro-3-hydroxymethylbut-3E-enyl)-1*H*-pyrimidin-2-one (4E). A mixture of 15E (284 mg, 0.79 mmol) in methanol (20 mL) was saturated with ammonia

at 5° C, and then sealed and heated in a 50° C oil bath for 18 h. The solvents were removed under reduced pressure and the crude product was purified by flash chromatography (silica gel, 9:1 dichloromethane/methanol, $R_f = 0.27$) to give **4E** (107 mg, 0.51 mmol, 64%) as an off-white powder. m.p.= $136-138^{\circ}$ C; ¹H NMR (300 MHz, CD₃OD) δ 2.56 (td, J=6.6, 2.0 Hz), 3.29 (t, J= 6.6 Hz, 2H), 4.00 (dd, J= 4.0, 1.0 Hz, 2H), 5.81 (d, J= 7.1 Hz, 1H), 6.72 (d, J= 84.6 Hz, 1H), 7.53 (d, J= 7.1 Hz, 1H); ¹³C NMR (75 MHz, CD₃OD) δ 26.09 (d, J= 4.1 Hz), 49.43, 61.81, 95.49, 120.84 (d, J= 4.6 Hz), 148.08, 151.51, 159.26, 168.44; ¹⁹F NMR (282 MHz, CD₃OD) δ -133.35 (d, J= 84.6 Hz); HRMS calc (C₉H₁₃FN₃O₂) 214.0992, found 214.0984.

4-Amino-1-(4-fluoro-3-hydroxymethylbut-3Z-enyl)-1*H*-pyrimidin-2-one (4Z). 1% (w/v) Aqueous NaOH (2 mL) was added to 15Z (100 mg, 0.55 mmol) in methanol (8 mL) at room temperature. After 1.5 h, the mixture was concentrated under reduced pressure and crude product was purified by flash chromatography (silica gel, 17:3 dichloromethane/methanol, $R_f = 0.23$) to give 4Z (94.2 mg, 0.39 mmol, 70%) as a white powder. (Note: This is the preferred method for deprotection of 15Z since the methanolic ammonia procedure requires careful chromatography to yield pure product). m.p. 121-125°C; ¹H NMR (300 MHz, CD₃OD) δ2.39 (td, J= 6.8, 3.0 Hz, 2H), 3.89 (t, J= 6.8 Hz, 2H), 4.24 (dd, J= 3.0, 0.7 Hz, 2H), 5.83 (d, J= 7.2 Hz, 1H), 6.40 (d, J= 85.2 Hz, 1H), 7.52 (d, J= 7.2 Hz, 1H); ¹³C NMR (75 MHz, CD₃OD) δ 28.30 (d, J= 6.9 Hz), 49.07, 56.45 (d, J= 8.1 Hz), 95.56, 120.07 (d, J= 4.1 Hz), 146.19; HRMS calc (C₉H₁₃FN₃O₂) 214.0992, found 214.0990

Cytotoxicity Determinations in HeLa Cells. Exponentially growing HeLa cells plated at a density of 1 x 10^5 cells/35 mm dish were treated with different concentrations of compounds. The cells were allowed to grow in a 5% CO₂ incubator at 37° C for 72 h. At the end of the incubation, cells were collected by trypsinization and counted by a Coulter counter and IC₅₀ for growth inhibition was determined.

Acknowledgements

The authors wish to thank Dr. Prasad Sunkara for evaluating compounds 3E, 3Z, 4E and 4Z for cytotoxicity in HeLa cells.

REFERENCES AND NOTES

- Present address (1a) Eli Lilly and Co., Lilly Corporate Center, Indianapolis, IN 46285; (1b) Neurocrine Biosciences Inc., 3050 Science Park Rd., San Diego, CA 92121-1102.
- Bey, P.; McCarthy, J.R.; McDonald, I.A. Effects of Selective Fluorination on Reactivity, ACS Symposium Series 456, American Chemical Society: Washington, D.C., 1991, pp 105-133.
- (a) Matthews, D.P.; Persichetti, R.A.; Sabol, J.S.; Stewart, K.T.; McCarthy, J.R. Nucleosides and Nucleotides, 1993, 12(2), 115; (b) McCarthy, J.R.; Matthews, D.P.; Stemerick, D.M.; Huber, E.W.; Bey, P.; Lippert, B.J.; Snyder, R.D.; Sunkara, P.S. J. Am. Chem. Soc. 1991, 113, 7439.
- (a) Jarvi, E.T.; McCarthy, J.R.; Mehdi, S.; Matthews, D.P.; Edwards, M.L.; Prakash, N.J.; Bowlin, T.L.; Sunkara, P.S.; Bey, P. J. Med. Chem. 1991, 34, 647;
 (b) McCarthy, J.R.; Jarvi, E.T.; Matthews, D.P.; Edwards, M.L.; Prakash, N.J.; Bowlin, T.L.; Mehdi, S.; Sunkara, P.S.; Bey, P. J. Am. Chem. Soc. 1989, 111, 1127.
- 5. Hughes, D.L. Org. React. (N.Y.), 1992, 42, 335.
- 6. Mori, K.; Takigawa, T. Tetrahedron, 1979, 35, 933.
- 7. Chaudhary, S.K.; Hernandez, O. Tetrahedron Lett. 1979, 20, 99.
- 8. McCarthy, J.R.; Matthews, D.P.; Paolini, J.P. Org. Synth. 1993, 72, 216.
- 9. Watanabe, Y.; Ueno, Y.; Araki, T.; Endo, T.; Okawara, M. Tetrahedron Lett. 1986, 27, 215.
- 10. Toyota, A.; Katagiri, N.; Keneko, C. Synth. Commun. 1993, 23, 1295.
- 11. These experiments were done on a Varian 300 MHz spectrometer by Dr. Edward Huber of Hoechst Marion Roussel, Cincinnati, OH.
- 12. Browne, D.T.; "Synthetic Procedures in Nucleic Acid Chemistry," Vol. 1, P. 98, 1968.